PKI Past Present & Future

Ashutosh Saxena

- Motivation
- PKC and PKI
- PKI examples
- · PKI criticisms & obstacles
- PKI evolution
- The road ahead...

Motivation

- We have crossed 15 yrs of formal PKI service in INDIA. (Remember IT Act 2000)
- Has our understanding and usgae of this technology grown in any way?
- With evolution of both theory & technology, where we are heading towards!!

PKC and PKI

- Public key cryptography
 - Each entity in a collection has a pair of keys
 - Alice has pub_A, priv_A
 - Enc, d-sig. possible (mathematical operations)
 - · RSA, ECC, Bilinear Pairing, Lattice based, etc...
- Public Key Infrastructure (PKI)
 - Makes PK cryptography available to applications and environments that wish to use it
 - Enc, d-sig. possible (security operations)
 - <u>Key pair</u> bound to an entity <u>identifier</u> in a way that makes it useful to a variety of apps

PKI (cont'd)

- · "Identifier"
 - Uniquely, without ambuguity, specifies entity within some context or environment, but may not necessary reveal actual identity

 Context/environment need not be global in scope (depends on apps that will use keys)

PKI (cont'd)

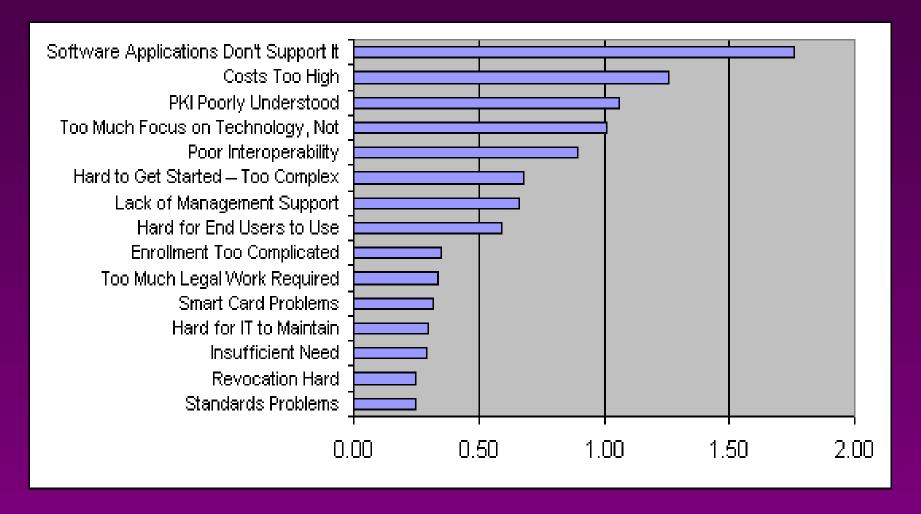
- · Binding of key pair and identifier
 - Validity of bindings
 - Authority (making & breaking)
 - Issuance process (syntax & dissemination)
 - Termination process (alerting)
 - Use of bindings
 - Key management process ("One/All purpose")
 - Binding validation process (trusting someone else's key)

- Motivation
- PKC and PKI
- PKI examples
- · PKI criticisms & obstacles
- PKI evolution
- The road ahead...

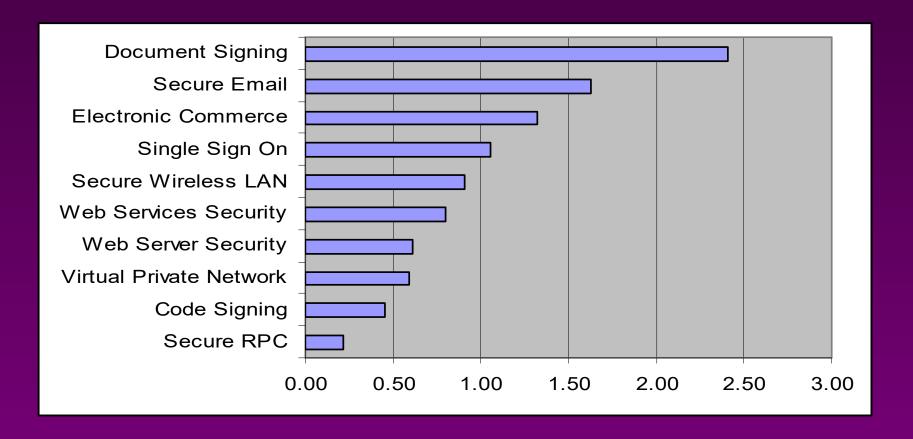
PKI Examples

- Over the past years, there have been several approaches to model and implement PKI
- Like X.509, PGP, SPKI, etc.

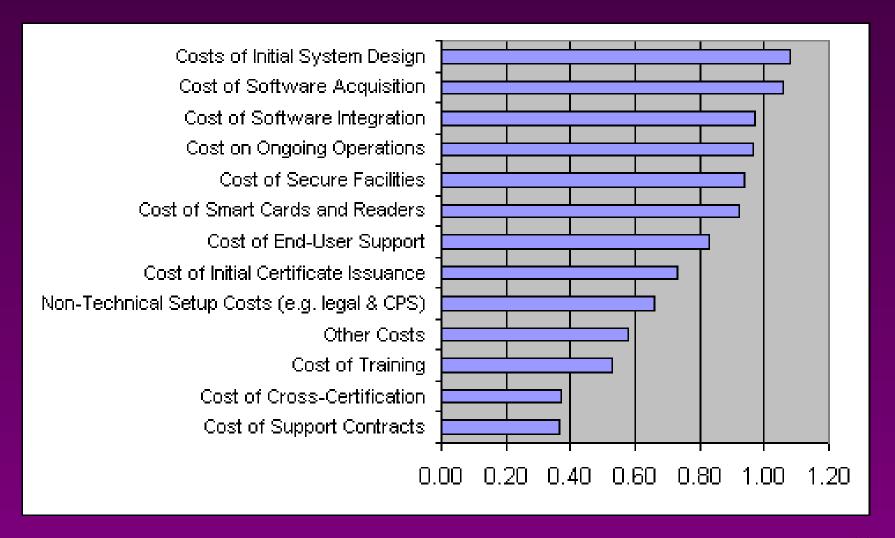
Sample Comparisons

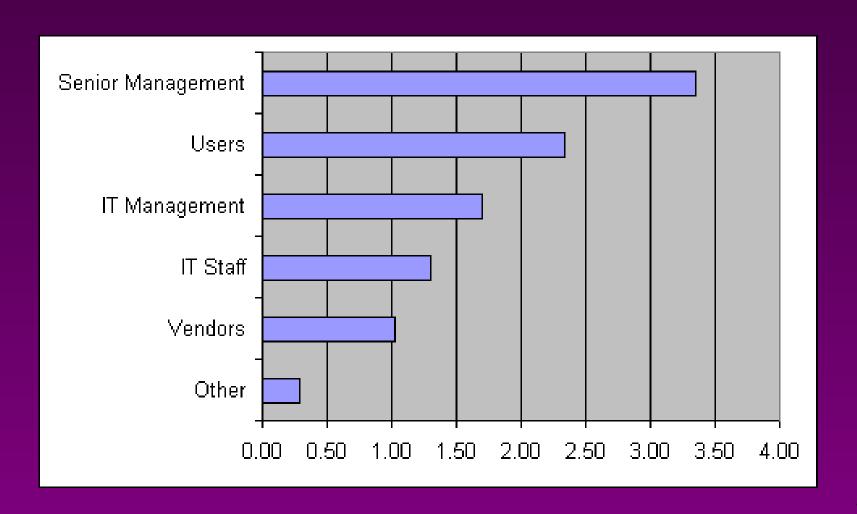

PKI Solution	Authority	Issuance
		Process
X.509	CA, AA. CA is owner /	ASN.1 syntax. X.500
	definer of namespace.	or LDAP directories.
PGP	No external authority.	Issued by key owner
	User is owner / definer	(e.g., Web page, e-mail
	of namespace.	sig., key server).
SPKI	Authorization granter.	Issue authorizations
	Relying party is owner /	
	definer of namespace.	based on pseudo Ids.

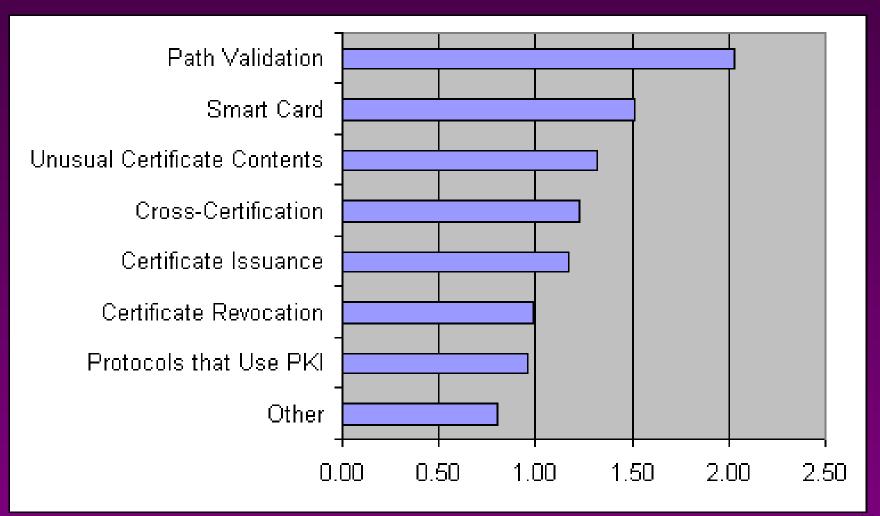
- Motivation
- PKC and PKI
- · PKI examples
- PKI criticisms & obstacles
- PKI evolution
- The road ahead...


PKI Criticisms & Obstacles

- Many criticisms have been leveled at this technology
- Probably the best-known collection is the "10 Risks" paper by Ellison & Schneier
- But criticisms cannot always be taken at face value: need to consider whether the "flaw" being criticized is actually related to PKI or not


Obstacles: Ranked by Importance


Applications: Ranked by Need for Improvements in PKI Support


Costs Ranked

Parties: Ranked by Greatest Need for PKI Understanding

Where the Most Serious Interoperability Problems Arise

- Motivation
- PKC and PKI
- PKI examples
- · PKI criticisms & obstacles
- PKI evolution
- · The road ahead...

Evolution

- In the year 1993 version of the ISO/IEC CCITT/ITU-T IS X.509 began to be disseminated, recognized, and implemented in small-scale environments
- Late 1993 / early 1994 was effectively the birth of PKI (although the acronym was yet to be coined)
 - Infrastructural considerations were paramount (how to make PK technology available to a wide variety of applications)

Evolution (cont'd)

- Initial definition (1994)
 - Authority: always and only a CA
 - Issuance: X.509 syntax; DN; X.500 Directory
 - Termination: CRL; X.500 Directory
 - Anchor: root of CA hierarchy
 - Private key: CA gen.; local storage
 - Validation: large, special-purpose s/w toolkit

Evolution (cont'd)

- After more than a decade of extensive discussion, research, and implementation by numerous interested parties world-wide:
 - Each of the 6 components has broadened quite considerably with deeper understanding
 - BUT, the same 6 components comprise the core of the definition (i.e., the essential characteristics of the definition remain unchanged)

Evolution (cont'd)

- Current definition
 - Authority: multiple choices (incl. RAs)
 - Issuance: multiple choices (syntax)
 - Termination: multiple choices (incl. online)
 - Anchor: multiple choices (augment & diminish)
 - Private key: multiple choices (gen., reg., storage)
 - Validation: mult. choices (thin client; native apps)

- Motivation
- PKC and PKI
- PKI examples
- · PKI criticisms & obstacles
- PKI evolution
- The road ahead...

Future of PKI

- Moving from theory to practice
 - Over ten years, innovative thinking, fruitful technical discussion, constructive criticism, and implementation efforts have driven the recognition of the need for options
 - Research into secure architectures and secure protocols have made options possible
 - BUT options have yet to be embraced in a significant way in real products

Future of PKI (cont'd)

- ✓ A priority area to be addressed is better certificate processing in complex cases.
- Multiple sources of revocation status (CRL, OCSP, indirect CRL, . . .) require careful definition of procedures when building the certificate path up to a trusted root and verifying the status of all certificates in chain.
- ✓ An exact API needs to be defined and implemented as a library to support Applications.
- ✓ This would make PKIs more suited to real-world needs

Conclusion

- The goal of this discussion is to convey that the PKI community has significantly broadened its understanding of this technology.
- The challenge now is to translate that understanding to real PKI deployments that solve authentication challenges in real, heterogeneous environments.